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Preface

I wrote this thesis with the intention of making it as accessible as possible. How-
ever, given the visual nature of pattern formation, it’s difficult to capture the most
compelling aspects of this project on paper (i.e. the cool pattern videos). For this
reason I supplement the standalone thesis presented here with a web page de-
signed to enhance the reader’s understanding. As of writing, the page http://
joelhawkins.info/thesis provides an overview of this thesis and displays video
simulations of each pattern discussed as well as interactive charts of the results
derived in Chapter
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Abstract

A method of topological analysis known as computational homology is explored
in the context of the Gray-Scott reaction-diffusion model. Using the homology
data of patterns generated by simulations of the Gray-Scott model (a time series of
the Betti numbers), the Shannon entropy S is calculated over a large set of param-
eters to elucidate features about the system. The results of the calculation show
strong qualitative agreement with previous nonlinear analysis of the Gray-Scott
system. In addition, a formal mathematical description of homology is provided
to uncover the roots of the theory. Other applications of homology, its viability as

an analytic technique, and the problems encountered therein are also discussed.
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Introduction

The study of pattern formation is incredibly diverse and certainly one of the most
compelling aspects of nonlinear phenomenology. Scientists from many disciplines
study pattern formation on scales ranging from that of the entire universe all the
way down to the microscopic Just a cursory glance at the structure of a wind-
swept sand dune, a snowflake, or even our own spiral galaxy reveals something
interesting. Observation of these patterns might lead a scientist to ask what causes
the pattern and wonder why there are patterns at all. This question gets compli-
cated quickly because whether you see ‘God in the patterns’ or see them as the
result of a non-equilibrium universe, there is still the question of what it means to

have “structure” or “complexity” or even to be “interesting.”
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Figure 1: Patterns of the Gray-Scott reaction-diffusion system simulated by Karl
Sims. Figure adapted from K. Sims, “Reaction-diffusion tutorial,” 2013. Available
athttp://www.karlsims.com/rd.html.

Of course, patterns in nature are inherently difficult to understand; they are of-
ten inhomogeneous, subject to many unknown forces, or simply too large or small
to study carefully. So before arriving at conclusions about the structure of the uni-
verse, it is helpful to look at idealized systems. This can mean a tightly controlled
experimental setup [3] or a completely computational model like the one discussed
here; Figure 1| shows the patterns formed by simulations of the Gray-Scott chemi-
cal reaction-diffusion model (more about this system in Section [2]. Indeed, the

1See the introduction of Cross & Greenside for an overview of the study of pattern formation [1].
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2 Introduction

vast amount of literature on the study of pattern formation looks to these simpli-
tied, yet no less dazzling, “prepared patterns” to draw conclusions about natural
patterns [1]. One heavily studied example is Rayleigh-Bénard convection. The ex-
perimental setup is extremely accessible; a thin layer of fluid is heated from below
and cooled from above. Above a critical temperature, the fluid begins to flow with
the hot upflows and cold downwellings giving rise to patterns like the one shown
in Figure 2}

Figure 2: An image of the “prepared pattern” formed by Rayleigh-Bénard convec-
tion. A thin layer of fluid is heated from below and cooled from above. Dark
regions indicate the hot upflows and bright regions indicate cold downflows.
Adapted from H. Kurtuldu, K. Mischaikow, and M. Schatz, “Measuring the de-
partures from the Boussinesq approximation in Rayleigh-Bénard convection ex-
periments,” Journal of Fluid Mechanics, vol. 682, pp. 543-557, 2011.

The study of patterns often comes down to the study of image data, especially
in the setting of a computational simulation. There are many mathematical tools
available to help interpret this kind of data but as the complexity of our informa-
tion (i.e. the amount of data) increases, it becomes increasingly difficult to parse
relevant information. Technological development in recent years not only makes
capturing massive amounts of data possible, but commonplace. In the world of
medical imaging, for example, data sets of X-Ray tomography, which allow for 3D
reconstruction of biological structures such as the heart or lungs, can easily exceed
dozens of gigabytes. While the increasing availability of data would serve only
to improve our understanding of these systems, it is only as useful as our analyt-
ical methods allow. Traditional techniques may fall flat in the face of exceedingly
sophisticated information.

Take for example the Fourier transform, a powerful method for analysis which
is often used to remove noise or apply filters to images. We would expect the

Fourier transform to provide some insight into the spatial frequency of the im-
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(a) Pattern type a. (b) Pattern type «.
(R o T vl
(c) Fourier Transform of «. (d) Fourier Transform of x.

Figure 3: Two very distinct pattern types of the Gray-Scott reaction-diffusion sys-
tem, « and x (described further in Section [I.I). The Fourier transform of each
pattern is hard to distinguish by eye and extracting meaningful information is dif-
ticult. The problematic nature of this method motivates our need for other, perhaps
lower-level, analytic techniques.

ageﬂ but in some cases, this method fails to provide useful information. Examine
the two distinct pattern types of the Gray-Scott reaction-diffusion system shown
in Figure 3, The two pattern types a and x, shown in Figures 3ajand {3b} are easy to
differentiate by eye yet their Fourier transforms (Figures 3c/and [3d)) are disappoint-
ingly similar. Although this method is capable of extracting useful information,
we would like some way to supplement our findings. The need for new methods
arises and many times that means starting at the lowest level (i.e. from the struc-
tures that make up the image) especially when the crucial information is geometric
in nature.

But for many systems, it doesn’t make sense to attempt to describe basic ge-
ometric structures in terms of the underlying mathematical equations (assuming

we can write them down in the first place). This problem calls for a framework

2In this case, the Fourier transform converts from the spatial domain the image we see, to the
frequency domain. The Fourier transform has been used for intricate pattern recognition, see [4].
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that gets at the geometric information even when faced with numerical error and
minor perturbations. The theory of computational homology described in Chap-
ter 2| does just this. Under the umbrella of algebraic topology, homology provides
a beautiful framework for transforming topology into algebra from which one can
draw insight into global properties. Although homology has only recently been
brought to the fore of experimental physics, its application has shown interesting
results [5, 16} 7, 8]. This project explores the application of this theory to one pattern
forming system in particular and highlights the information that may be derived

from it.



Chapter 1
Reaction-Diffusion Systems

Reaction-diffusion (RD) systems are models that determine how concentrations
of chemical species change in space and time. These systems are driven by two
processes: chemical reaction and spatial diffusion. RD systems are governed by
partial differential equations, the most basic of which might look something like
3—? = dV2u +r(u). (1.1)
This is sometimes called the Kolmogorov-Petrovsky-Piskounov equation in which
u is a generic chemical species, d is a diffusion coefficient, V2u is the Laplace op-
erator, and r(u) is a general reaction term. Of course, RD systems consisting of a
single chemical do not form interesting patterns since there is no reaction taking
place.

RD systems are interesting because their solutions can show wide variety of
complex patterns, many of which resemble patterns of nature such as spirals,
stripes, and spots [9]. One drawback of the simplicity of these systems is that
quantitative comparison to experimental systems is difficult. Alan Turing, one of
the first to study RD systems in detail, acknowledged this in the famous opening
lines of his 1952 paper [10]:

In this section a mathematical model of the growing embryo will be described.
This model will be a simplification and an idealization, and consequently a
falsification. It is to be hoped that the features retained for discussion are those

of greatest importance in the present state of knowledge.

Despite this concession, reaction-diffusion systems constitute an important part of

the study of nonlinear dynamics today. Turing went on to suggest that reaction-
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diffusion systems of morphogens, chemicals that govern the pattern of embryo
tissue development, may be able to explain the presence of spots or stripes on
an organism. Although the science behind animal patterns is more complicated,
Turing laid the framework by which patterns form from minor perturbations of
otherwise homogenous systems. Since then, many others have noted the similarity
between RD patterns and patterns in nature [11} 12} [13, [14, (15} 16 [17]. Figure
provides an example of how patterns formed by reaction-diffusion systems have
been used to generate natural-looking textures in the context of computer graphics.

Figure 1.1: Patterns generated by reaction diffusion systems. Witkin compares
these patterns to those of nature [17]; “Row 1: reptile, giraffe, coral, scalloped. Row
2: spiral, triweave, twisty maze, replication, purple thing. Row 3: sand, maze,
zebra haunch, radial. Row 4: space giraffe, zebra, stucco, beats us.” Adapted
from A. Witkin and M. Kass, “Reaction-diffusion textures,” SIGGRAPH Computer
Graphics, vol. 25, no. 4, pp. 299-308, 1991.

1.1 The Gray-Scott model

One important model in the study of pattern formation is the Gray-Scott system

which models the reaction of two generic chemical species, U and V [18]. The
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model is based on the chemical reaction

u+22v —3v
V- P,

(1.2)

where V is converted to an inert product, P, which doesn’t interfere with the re-
action of the system. V appears on both sides of the chemical reaction and thus
catalyzes its own production. Gray and Scott developed the following set of non-
dimensional partial differential equations (PDEs) in which u and v represent the

concentrations of chemicals U and V respectively.

ou

= = d,V?u — uv® + F(1 —u) (1.3)
% = d,V?v 4+ uv? — (F+k)o (1.4)

We see that both equations take the form of (Eq. except u and v are coupled.
The boundary conditions are periodic and for simplicity, d,, d,, F, and k are taken
to be constants. The first terms in each equation, d, V2u and d,V?v, are the dif-
fusion terms. The Laplace operator, V2, is responsible for the diffusion of each
chemical in space (like the diffusion of heat in the more familiar heat equation)
while the diffusion coefficients, d,, and d,, govern the diffusion rate. The +uv? terms
are the reaction terms which convert U into V; an increase in v is equal to the de-
crease in u, hence +uv? in (Eq. . Since U will eventually get used up to generate
V, the term F(1 — u) is the replenishment term which reintroduces chemical U into
the system (1 has a maximum value of 1). Similarly, chemical V would increase
without limit except for the diminishment term, (F + k)v, which serves to remove
chemical V from the system. F is referred to the feed rate and determines the rate of
replenishment while k is the difference between this rate and that of chemical V.

For some biological intuition, one can imagine the chemical reactions that occur
in the development of an embryo as Turing theorized. In this case, the supply of
chemicals might be the bloodstream where the replenishment and diminishment
rates of the reaction are determined by the permeability of cell membranes.

The Gray-Scott system is particularly notable for the wide range of irregular

patterns it produces. Previous analysis of the system by Pearson [9] identified at
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least 12 different pattern types, all of which occur at different F, k with d,, = 2dv
Figure shows the 12 quantifiably different patterns observed in this system
which Pearson classfied using standard methods of nonlinear analysis (e.g. linear
stability analysis and bifurcation theory) [19]. The chemical concentration of U is
plotted over a 256 x 256 computational domain. The wide variety of observable
patterns reveals the extremely variable behavior of this system as parameters are
varied. Figure[I.3|provides a legend for the patterns, mapping each of them to their
locations in F, k parameter space. One of the most compelling qualities of these
patterns is their resemblance to patterns of nature. For example, x (Figure [1.2j)
looks like coral and A (Figure resembles the growth of bacteria. Other pat-
terns, like B (Figure[1.2b), exhibit complex spatiotemporal behavior that resembles

turbulence.

1.2 Numerical simulation

For the calculations described here, (Egs. 1.4) are solved by forward Euler inte-
gration of the discrete Laplacian. This is obtained by the finite difference method
and given by

Viu(x,y) ~u(x—1Ly)+ulx+1,y) +ulx,y—1) +u(x,y+1) —4u(x,y), (1.5)

and similarly for v. In the Python programming language, this can be easily im-
plemented using the Numpy package as below (see Appendix [B.1|for full code).

Lu = ( U[0:-2,1:-1] + U[2: ,1:-1] +

U[1:-1,0:-2] + U[1:-1,2: ] - 4%U[1:-1,1:-1] ) # Laplacian matrix for u
Lv = ( V[0:-2,1:-1] + V[2: ,1:-1] +

V[1:-1,0:-2] + V[1:-1,2: ] - 4xV[1:-1,1:-1] ) # Laplacian matrix for v
uvv = wkvv # corresponds to uv”2 term

u += (DuxLu - uvv + F * (1-u) ) # concentration matrix for u

v += (Dv*Lv + uvv - (F+k)*v ) # concentration matrix for v

The matrices 1 and v contain concentration values for all points in the mesh. By it-
erating this calculation and plotting 1 and v as concentration maps, we can observe

the evolution of the concentrations in time. The numerical accuracy of this solution

'Turing instabilities, which give rise to spontaneous pattern formation, cannot occur if all diffu-
sion coefficients are equal. The ratio of 2 for diffusion coefficients has been found to show symmetry
breaking for a wide range of parameter values [9].
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Figure 1.2: Patterns of chemical concentration U identified in [9]. Each pattern,
Figure [1.2a|—Figure is designated by a Greek letter which corresponds to the
plot in Figure Red and blue indicate U = 1 and U ~ 0.2 respectively. Note
that a concentration plot of chemical V would appear as the inverse of U with red
and blue swapped. Video simulations of each of these pattern types are available
online athttp://joelhawkins.info/thesis.
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Figure 1.3: The mapping of Greek letters in Figure (1.2 to their location in F, k pa-
rameter space. R and B indicate that the system evolved to uniform red and blue
states respectively. This figure also represents a phase diagram of the reaction ki-
netics. Between the solid and dotted line, the system is bistable for which there are
two linearly stable steady states. As f passes below the dotted line, the non-trivial
steady state becomes unstable through Hopf bification giving stable periodic or-
bits for k < 0.035 and unstable ones for k > 0.035. The trivial state, (U =1, V = 0)
exists for all (f, k) outside the solid line. Adapted from J. E. Pearson, “Complex
patterns in a simple system,” Science, vol. 261, no. 5118, pp. 189-192, 1993.

is limited by the discretization of the Laplacian in (Eq. which is second-order
accurate.

A spatial grid of 256 x 256 points constitutes the mesh with a time step of 1E|
The system was initialized with the state U = 1, V = 0 with a 40 x 40 area located
symmetrically in the center perturbed with U = 0.5, V = 0.25. This square area is
then further sprinkled with 1% random “noise” to catalyze the reaction. The pat-
terns in Figure[I.2) were generated using this method and depict the concentration
of chemical U. A plot of chemical V would appear as the inverse of U so only U is
shown.

For each F, k, the simulation is run for 25,000 time steps. Every 10th image of the

simulation is saved, so a total of 2,500 PNG files are produced to describe the time

2There are no qualitative differences for domain sizes up to 1024 x 1024 and time steps as low as
0.01. Initial conditions also have little to no effect on the qualitative features of the resulting pattern
after some time [9].
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evolution of each pattern. The resulting images used for the analysis described in

Chapter 3|use a greyscale colormap like that of Figure






Chapter 2
Computational Homology

As large amounts of data become available, it becomes more difficult to determine
what information is relevant. There are, of course, high and low-level approaches.
A high-level approach like a fingerprint scanner or handwriting recognition might
be the end-goal of one’s analysis, but lower-level approaches like homology look
at the geometric makeup of an object and are often a requisite step toward building
higher-level processes. Homology is one way of analyzing local properties in order
to extract information about global phenomena.

At this time, computational homology is a relatively new field and its applica-
tion in physics has only recently been explored [20, 7, 3, 8]. Although homology
is a field of algebraic topology, it combines the mathematics of several other fields
including combinatorics and computation. The mathematical formalism behind
homology is difficult to grasp so only the relevant information will be detailed in
Section 2.1} For the interested reader, Section 2.2 presents a more thorough discus-
sion of the mathematical background of cubical homology.

2.1 Homology overview

At its root, homology is concerned with the enclosed holes and connected pieces
in topological spaces. This vague statement might lead one to ask what exactly
we mean by “connected pieces” and “holes.” To gain an intuitive understanding,
examine Figure 2.1/in which the connected pieces (the black segments) and holes
(the white enclosed areas) of the Reed Griffin have been colored in. While it may
seem easy enough to simply count these structures as I have done, the goal of ho-

mology is to provide a formal mathematical description of these geometric struc-
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tures regardless of the complexity or spatial dimension. Although the formalism
of homology is difficult to understand, the relevant concepts are easily illustrated

through examples. It’s best to think about this in one dimension first.

& ;

{

2

oA

) =
.zi

o2

Figure 2.1: The homology of the Reed Griffin. On the left (2.1a) is the original
image. The isolated black segments of the Griffin are the “connected pieces” and
the white enclosed areas are the “holes”. The other two (2.1bjand have been
colored in to highlight the 14 connected pieces and 4 holes respectively. Homology
provides a precise mathematical description these structures.

(b)

Figure [2.2| shows two simple topological spaces, X and Y. Although X and Y
are spaces with one and two line segments respectively, in terms of homology one
would say X consists of a single connected piece while Y has two distinct pieces. The
fact that the line segments are straight or of different length is not important for
the homology. In this one-dimensional example, the zeroth homology groups of each

are
Ho(X)=Z' and Hy(Y)=Z? (2.1)

where Z is the group of integers. The homology pairs a topological space (e.g.
X and Y) with an abelian group, a set of elements combined with operations that
satisfy five axioms: closure, associativity, identity, invertibility, and commutativity
(a full definition can be found in Appendix[A.1.1). Notice, however, that the zeroth
homology group of Y is Z?; the rank of the group, 2, is what accounts for the two
distinct pieces, but more on this later.

Since there is a zeroth homology group, it makes sense that there would be a first
homology group. Looking at the two-dimensional example in Figure the homol-



2.1. Homology overview 15

X

Y

Figure 2.2: Topological spaces X and Y. X consists of one connected line segment
and Y has two disconnected line segments.

ogy of each space X;, X;, X, and X; is

=
£
It

=7 Ho(Xp) ZZ Ho(Xc) ZZ Ho(Xy)=2Z? (22)
Hy(Xo) 2Z Hi(Xp) 20 Hi(Xe) =Z H(Xg) 2 Z. (2.3)

(a) X, (b) Xy

(0 Xe (d) Xz

Figure 2.3: Topological spaces X;, X;, X, and X;. Shading indicates that the en-
closed area is filled.

Spaces X,, X, and X, have a zeroth homology group of Z since there is a single
connected component while X; has Z2 to account for the two disconnected lines.
In each space, a connected component forms an enclosed area (i.e. the squares).
The square in Figure forms a hole, a region completely enclosed by the black
line. Figures[2.3a} [2.3d, and[2.3d|each contain one hole. The shading in Figures[2.3b}
2.3, and 2.3d|indicates that the hole is filled and is thus no longer counted. Just as

the zeroth homology group is concerned with connected segments, the first homology

group is concerned with holes.

The terms “piece” and “hole” are informal. Formally, we could say that the k"
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Figure 2.4: The pattern x described in Section The homology of x gives Betti
numbers Bgp = 1 and B; = 9. True to the homology, we can easily count a single
black connected component and nine holes, each of which is filled with a different
color to illustrate this fact.

homology group, Hi(X), represents the group of k-dimensional hole of X where
a k = 0 hole is merely the gap between two components (e.g. Y in Figure[2.2). As1
alluded to earlier, the rank of the homology group (e.g. the rank 2 of Z? in (Eq. )
represents the number of k dimensional holes. This is called the Betti number By. In-
deed, Betti numbers are non-zero for all k < d where d is the dimension of the
topological space. Betti numbers are the most important feature of the homology
in this thesis since they assign a nice mathematical quantity to an otherwise visual
characteristic of a topological space. Figure [2.4| gives the Betti numbers for pat-
tern «; there is clearly one single connected component, shown in black, and nine

enclosed holes which have been colored in. Thus, o = 1 and B; = 9.

2.1.1 Prior work

Although the literature surrounding homology is relatively little, the techniques
described here have been used to characterize complex patterns. Prior work by
Gameiro and Mischaikow examines the 1D Gray-Scott system as well as the 2D
FitzHugh-Nagumo model [7]. Using a time series of Betti numbers, they are able
to calculate the maximal Lyapunov exponent (LE) which, if positive, implies exis-

tence of spatial-temporal chaos. They compare their computation of the LE using

IThe “dimension” of k is different from the dimension of the topological space. To describe the
dimension of a space such as a cube in R3, call it X, we write dim X = 3. Structures of lower
dimensions, such as the square faces that make up the cube, are embedded in the higher dimensional
space X. For k > dim X, Hy (X) = 0since there are no structures embedded in a space with a higher
dimension than that of the space itself. It is important to note that if we could place the topological
spaces shown in Figure which live in R? on the page, into 3-dimensional space, IR, this would
not change the homology groups.
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a time series of Betti numbers to that obtained through standard methods. The re-
sults are compelling for two reasons; one is that there is near-perfect agreement be-
tween the LE obtained through the Betti time series and standard methods which
confirms that using homology data is an acceptable approach. The other is that,
due to its topological features, the homology data is also able to capture spatial
chaos which the LE calculated through the standard method does not (it only mea-
sures temporal chaos).

The work done by Gameiro, Mischaikow, and others provides a wonderful
backdrop and inspiration for the analysis of the 2D Gray-Scott model in this the-
sis. The computational method for calculating homology data of this system is
outlined in Chapter 3| In Section I describe how this can be used to derive

information about the complexity of a system’s dynamics.

2.2 Cubical homology

In cubical homology, topological spaces are represented as a collection of cubes.
This thesis is concerned with the interpretation of digital images as topological
spaces. Digital images are quite literally a collection of two-dimensional cubes,
pixels, thus a homology that examines these objects is a natural environment for
examining the output of computer simulations. In this section, I present a brief
mathematical description of cubical homology that closely follows that of [21]
and [5]. By skipping this section, one would miss some of the interesting sub-
tleties of homology theory but a thorough understanding is by no means essential
to the understanding of this thesis.

We'll start by defining elementary cubes, which make up the building blocks
for the theory. It is important to keep in mind here that one of the fundamental
ideas in homology theory is to connect topological objects (e.g. connected pieces
and holes) to algebraic objects.

Definition 2.2.1. An elementary interval is an interval I C R of the form
I=[,1+1] or I=][LI]
for some | € R. To simplify notation, say

[ = [L1]
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Q1

Q2

Figure 2.5: Two elementary cubes Q1, Q> C R?. The cube Q; = [1,2] x [1,2] and
Qo = [3,4] x [1]. Notice that Q, C IR? is different from the cube [3,4] C R as they
are subsets of different spaces.

is an interval containing a single point, which we call a degenerate interval. Inter-
vals of the form [I,] + 1] are called nondegenerate.

Definition 2.2.2. An elementary cube Q is a finite cartesian product of elementary
intervals,
Q:Il><12><...><[dC]Rd

where each I; is an elementary interval. We denote the set of all elementary cubes
in RY as K9
The set of all elementary cubes, I, is

K= U K.
d=1
Two elementary cubes are shown in Figure Cube Q; = [1,2] x [1,2] and
Q> = [3,4] x [1]. Both Q1 and Q, are subsets of IR? even though one interval of Q,

is degenerate.

Definition 2.2.3. Let Q = I; x I x ... x I; C R% be an elementary cube. The
embedding number of Q is defined to be d which we denote by emb(Q). Interval I;
is the i component of Q and is written I;(Q). The dimension of Q is defined as the
number of nondegenerate components in Q and denoted dim Q. We refer to an
elementary cube Q with dim Q = k as a k-cube and denote

Kr:={Q € K|dimQ =k},
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and
K= Ko n K.

The relationship between the embedding number and dimension might be a
little muddy since it seems that they would always be the same. Observe that
for elementary cube Q, if emb(Q) = d, then Q € K?. The only general relation
between the embedding number and dimension of Q is that

0 <dimQ < emb(Q).

To illustrate this, imagine a Rubik’s cube on a desk. The Rubik’s cube itself has

both emb, dim = 3 while any one square face has emb = 3 but dim = 2 (also see

Example (2.2.1)).

Example 2.2.1. Given elementary cube Q := [1,2] x [1,2] x [-1] C R3, we have
L(Q) =[1,2], L(Q) = [1,2], and I3(Q) = [—1] (which is degenerate). Therefore,
emb(Q) = 3 and dim Q = 2, due to the degenerate I5.

Now we must define the class of topological spaces for which we define the
homology.

Definition 2.2.4. A set X C IR? is cubical complex if X can be written as a finite

union of elementary cubes.

Given cubical complex X C R, we define
K(X)={QeK|QCX}

and

Ki(X):={Q e K(X)| dimQ = k}.

We can write K9 (X) to remind us that X C R? as well as K¢ := K4(X) N Ki(X).
For example, elements of ICo(X) are vertices of X, elements of K1(X) are edges and
so forth. ICx(X) are the k-cubes of X.

Once again, our goal is to establish a relationship between algebraic objects and
topological spaces. The first step, then, is to associate some algebraic object with

the elementary cubes that we just defined.

Definition 2.2.5. For each elementary k-cube Q € K¢, we associate an algebraic ob-
ject Q which we call an elementary k-chain of R where Q : lCl‘j — Z is the function



20 Chapter 2. Computational Homology

defined by

0 otherwise.

— 1 ifP=20Q,
Q(P){ =0

We also define 0 : K4 — Z to be the zero function, i.e. 0(Q) =0forall Q € K.
The set of all elementary k-chains of R? is given by

Ki={0lQeki}
and the set of all elementary chains of R? is given by

Kd = | K.
k=0

As previously mentioned, the purpose of defining the k-chain Q versus k-cube
Q is to bridge the gap between the algebra and the topology. Just as a k-cube
describes a structure formed by the product of intervals (e.g. [0,1] x [0,1] is an
elementary 2-cube), a k-chain describes a combination of simplices (a 0-simplex is a
point, a 1-simplex is a segment, a 2-simplex is a triangle, and so on). In the context
of a graph, a chain might describe a path between vertices (0-simplices) in the form
of a linear combination of the vertices.

For an elementary cube Q, we refer to @ as its dual elementary chain. Conversely,
given elementary chain Q, we call Q is its dual elementary cube. What we want is
a one-to-one relationship between the elementary k-cubes (topological objects) and
elementary k-chains (algebraic objects). In other words, the map of k-cubes (Kf) to

k-chains (I/CT,f) is a bijection.
Proposition 2.2.1. The map ¢ : Ki — I/C\‘]f given by ¢(Q) = Q is a bijection.
Proof. See Kaczynski et al. [5]. O

Proposition allows us invoke the inverse of ¢ to go from an algebraic ob-
ject, the elementary chain Q,toa topological set, Q. The following definition uses
the algebra that we have built up to give the elementary k-chains algebraic struc-

ture.

Definition 2.2.6. The group C,f of k-dimensional chains (or k-chains) of R? is the free
abelian group (see Appendix i generated by the elementary chains of IC]‘f.
Thus the elements of C]‘f are functions c : IC,‘f — Z such that ¢(Q) = 0 for all but
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a finite number of elementary cubes Q € IC;? . In particular, the set of elementary

k-chains I/C;‘f is the basis for C]‘f. By the same notation used in Appendix|A.1.1

cl.=7Z(Kd).
If c € C4, then dim ¢ := k.

Figure 2.6|illustrates how we can use information about the boundary to exact
information about the k-cubes, but we are again using topological information (the
existence of a boundary) to derive more topological information (the existence of
loops). What we would really like to do is use algebra to get at this information,
so we start by defining the algebraic boundary of a k-chain.

D C
¢ ®
® ®
A B
® ®
A B

Figure 2.6: The line segment (left) has a topological boundary given by {A} U
{B} (or [A, B]) and therefore does not form a loop (a 0-cube). The square (right),
however, does not have a boundary (since we can’t pick a definite start and end
point) and therefore forms a loop (a 1-cube).

The set of elementary chains forms a basis for C¢, thus we would like to eas-

ily describe an arbitrary chain ¢ € C in terms of the elements of K. Definition
(Eq.[2.2.7) provides such a relation which is analogous to the dot product in vector

space.

Definition 2.2.7. Consider cq,¢; € C,‘f, where ¢ = )" 2;Q; and ¢; = Yt ,Bi@
and «; and f; scalars. The scalar product of the chains c; and c; is defined as

<C1, C2> = i ocl-ﬁi.
i=1

The astute reader will notice that this definition restricts us to describing a k-

chain only in terms of k-dimensional cubes. We know, however, that cubes may
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be decomposed into lower dimensional faces. For example, the square in Fig-
ure 2.6/ may be constructed from the four edges (or 1D faces) [A, B], [B,C], [C, D],
and [D, A], and we would like to be able to write all k-chains in terms of lower-
dimensional faces. This will be essential when the boundary operator is defined in

and provides the motivation for the following definition and proposition.

Definition 2.2.8. Given two elementary cubes P & ICZ; and Q € IC,‘Z, let

L —

ﬁo@::PxQ

This extends to arbitrary chains ¢; € Cle and c; € CZ; by

C10Cp = ) (c1,P){cr, Q)P x Q
PEKkl, QGKkz
The chainc; ¢ ¢y € CZ;L?; is called the cubical product of ¢ and c;.

Proposition 2.2.2. Let Q be an elementary cubical chain of R? with d > 1. Then there
exist unique elementary cubical chains T and P with emb(I) = 1 and emb(P) = d — 1
such that

Q=1IoP

Proof. See Kaczynski et al. [5]]. O

Definition 2.2.9. Given k € Z, the cubical boundary operator or cubical boundary map
given by

o :ClH =l |
is a homomorphism of free abelian groups, which is defined for an elementary
chain Q € K4 by induction on the embedding number d as follows. Consider first

the case d = 1. Then Q is an elementary interval and hence Q = [I] € K} or
Q=I,1+1] € IC% for some | € Z. Define

20 {0/\ o=l
T4 -] ifQ=[,I+1]

Now assume thatd > 1. Let [ = [;(Q) and P = I,(Q) x ... X I;(Q). Thenby[2.2.2]

Q=1ToP.
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Define,
akQ = akl/I\OP\-I- (—1)k1T<> akzl/)\,

where k; = dim I and k; = dim P. Finally, we extend the definition to all chains
by linearity; that is, if c = a4 Q1 + 042@2 +---F leQm, then

ke = 019,01 + 129, Qo + - - - + 2,0, Q-

The domain of 9 is the k-chains, so if we know that ¢ € C? it is redundant and
labor intensive to write the subscript k so we simplify to 0. Geometrically speaking,
the boundary of a k-chain is simply the alternating sum of its (k — 1)-dimensional
faces. As Figure[2.7|demonstrates, however, merely having a boundary sum equal
to zero is not enough to constitute a loop. The right picture does not character-
ize a hole since it is filled in by the 2-chain QE| This boundary is represented al-
gebraically by 9(Q) = [A,B] + [B,C] — [C, D] — [ﬁ] We would represent the
boundary topologically by [A, B] U [B,C] U [C, D] U [D, A].

D C D C

A B A B

Figure 2.7: The boundary of the chain [A, B] + [B,C] — [C,D] — [ﬂ] is zero in
both pictures. The left picture, however, characterizes a loop (or hole) while the
one on the right does not since it is “filled in” by 2-chain Q.

We can now say that holes are characterized by chains that have a boundary
equal to zero, but are not themselves the boundary of other chains. In order to
count the holes, then, we must count the chains which have zero boundary, but are

not boundaries. The following definitions help us achieve this.

Definition 2.2.10. Let X C RR? be a cubical complex. Let Ke(X) := {Q|Q €
Ki(X)}. We define the set of k-chains of X as the subgroup Ci(X) of C generated
by the elements of Ki(X).

2Not to be confused with 2 Chainz [22].
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Proposition 2.2.3. Let X C RY be a cubical complex. Then
I (Ce(X)) C Cr1(X)

Proof. See Kaczynski et al. [5]]. O
This leads to the following definition.

Definition 2.2.11. The boundary operator of the cubical complex X is defined to
be
aii : Ck(X) — Ck_l(X)

obtained by restricting dy : C,‘f — C,ffl to Cr(X).

An extremely important property of the boundary operator is defined in the

following proposition.

Proposition 2.2.4.

Proof. See Kaczynski et al. [5]]. O

It should make sense that if we are to take the boundary of a topological ob-
ject, the boundary itself should have a lower embedding number (the boundary
of a square, k; = 2, is made up of lines, k, = 1). It may not seem immediately
intuitive that the boundary of a boundary is zero; the boundary of a disk is a circle
which has boundary equal to zero; the boundary of a baseball is its spherical shell
which also has a zero boundary. At this point we are tantalizingly close to defining

homology—but wait! The following descriptions will be helpful in a moment.

Definition 2.2.12. Let X C R be a cubical set. A k-chain z € C(X) is called a
k-cycle in X if 9z = 0. Thus the set of all k-cycles of X is the kernel of 0¥ and so it is
a subgroup of Cy(X). We denote the set of all k-cycles by Z;(X). In short,

Zi(X) = ker 9f = C(X) Nker 9 C Ci(X). (2.4)

A k-chain z € Ci(X) is called a boundary in X if there exists a (k + 1)-chain
¢ € Cyy1(X) such that dc = z. Thus the set of all boundary elements in C(X) is
the imag of Bl}fﬂ, and so it is also a subgroup of Ci(X). We denote the set of all

3That’s “image” in the mathematical sense (i.e. the subset that contains the output of a function).
The shorthand for this is imf for function f.
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boundary elements in C(X) by Bi(X). Once again,
Bp(X) :=1im 9,1 = 9k1(Crr1(X)) C Cr(X). (2.5)

We can now say more precisely what we wanted before; we want to characterize
holes by chains that have zero boundary (i.e. k-cycles, the elements of Z; (X)) but
are not themselves the boundary of other chains. The set of all k-chains that rep-
resent boundaries of other chains is B(X), so we want to count the elements of
Zx(X) that are not in Bi(X), and this will define our set of k-dimensional holes.
This is easily done by taking the quotient group of Z(X) by Bi(X) but this re-
quires that By(X) be a subgroup of Z;(X). By Proposition dc = z implies
9z = 9%c = 0, therefore every boundary is a cycle and Bx(X) is a subgroup of
Z(X) so we may rightfully proceed to the most important definition of this sec-
tion.

Definition 2.2.13. The k' cubical homology group of X is the quotient group
Hk(X) = Zk(X)/Bk(X).

The homology of X is the collection of all homology groups of X. The shorthand
for this is

Hi(X) := {Hk(X) }kez-

For a cubical set X ¢ RY we can show that, fori =0,...,d — 1,
Hi(X)=2P ©&Zy & Zy,® - & Zy,

where B; is a nonnegative integer, Z;, is the group of integers modulo b, b; > 1
provided k > 0, and b; divides b; 1 fori € {1,2,...,k — 1} provided k > 1. The @&
operator denotes a direct sum. For i > d we have H;(X) = 0.

Integer B; is known as the ith Betti number of X and by, by, . . ., by are the torsion
coefficients of H;(X). In general, B; := rank(H;(X)). Spaces with dimension d < 3
do not have torsion coefficients, just H;(X) = ZPFi, so we need not worry about
them for our purposes [21]].

This is certainly a great abstraction from what we started with before, con-
nected pieces and holes in a topological space, but here is some geometrical in-
tuition. As previously indicated, the Betti numbers encode some geometrical in-

formation. By is equal to the number of connected pieces of X, B is the number of
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holes (or loops) if d = 2 or the number of tunnels if 4 = 3. B, equals the number of

cavities if d = 3.

Example 2.2.2. An ordinary bike tube (a torus) has By = 1, the single connected
piece of rubber; 1 = 1, one hole in the center; and B, = 1, the hollow cavity inside
the tube.

The mathematical tour-de-force that we’ve just undertaken might seem like
major overkill. After all, here we are merely concerned with counting geomet-
ric structures that could theoretically be eyeballed (tedious as that may be). I ar-
gue, however, that the homology maintains some nice features for us. For one, it
provides a mathematically rigorous definition of the structures in question. Fur-
thermore, the homology of any structure is unchanged in any higher-dimensional
space (e.g. the homology groups of an empty square are the same in R? as in R3
or R* for that matter). Homology is not concerned with size or shape of any ob-
ject either; the homology of a coffee mug is identical to that of Figure The
theory reduces the amount of information required to describe an object to a few
topological quantities which may be difficult to grasp visually. Analysis of higher
dimensional data, such as a 4D construction of medical imaging data, which would
require a great amount of thought to assess visually, is completely feasible through
cubical homology [5]. Due to its dimension-independent formulation, the appli-
cations of cubical homology are limited only by the ability to construct sensical
topological information. In the following chapter, we shall see how the homology

theory described here can be applied to analyze patterns of the Gray-Scott system.



Chapter 3

Methods and Procedures

In this section, the methods for extracting homology information, i.e. Betti num-
bers, from images generated by simulating the Gray-Scott system are outlined.
Section 3.1| describes the process of preparing the images for computation of Betti
numbers and the considerations and problems that arise. Section[3.2)describes how
the Betti numbers are used to calculate the entropy of the Gray-Scott system as pa-
rameters are varied. For information on how the pattern images were generated in
the first place, see Section

3.1 Obtaining Betti numbers

Given the complicated overview of cubical homology theory given in Section
one might expect extracting the Betti numbers from an image to be a difficult un-
dertaking. Fortunately, CHOMP, (Computational Homology Project), a homol-
ogy software package developed by the group of Konstantin Mischaikow (Math-
ematics '79) at Rutgers University (formerly at Georgia Tech), facilitates this pro-
cess [23]. Furthermore, the way it works is extremely intuitive, essentially counting
clusters of adjacent pixels. CHOMP requires a 2-bit binary image as input Since
the images output by the Gray-Scott simulation are greyscale (see Section[I.2), they
must first be converted to 2-bit images.

IThat is, an image with only black and white pixels.
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3.1.1 Thresholding

The output of the Gray-Scott simulation is a series of 8-bit greyscale images, i.e.
there are 256 possible shades of grey (0 is black, 255 is white). The color map is such
that concentrations V,,;;;, = 0.0 — 255 and V};;;, = 0.4 — 0. In other words, white
and black indicate low and high concentration of V respectivelyﬂ Each image is
then thresholded at some value T € [0,255]. That is, all pixels with intensity less
than T are now black and those with intensity greater than T are now white.

A logical choice for T is the median pixel intensity of the image [20]. But, in the
case of sparse patterns like « and e (Figures and respectively), this results
in a completely black image since the median is very high. Although other adap-
tive methods of thresholding exist [6], the definitive answer to thresholding prob-
lems is persistent homology, a more sophisticated computational homology tech-
nique which requites a large leap in terms of complexity and is outside the scope
of this thesis [24]. This approach is concerned with the “birth” and “death” of ho-
mology components as the threshold is varied in a way that circumvents the need
for a threshold altogether. Persistent homology has recently seen great success in
analyzing large sets of nonlinear data [25].

Short of persistent homology, another reasonable choice would be to split right
down the middle, T = 128, but as Figures and illustrate, some information
can be lost in the process. Thus the optimal choice of threshold depends entirely
on the characteristics of the image. The patterns produced by the Gray-Scott sys-
tem are varied and no single value of T is ideal for all (F, k), but emperically, T
that is near 128 better agrees with the characteristics of the original pattern. After
experimentation, the value T = 144 was chosen to perform all the calculations for
Gray-Scott patterns of chemical V.

Provided in the CHOMP software package is a method for simply thresholding
images, chomp-greyscale-to-cubical. This takes a single image input, a thresh-
old value, and an output filename and returns a text file which contains the coor-

dinates of white pixels.

2V,uax was chosen based on the average maximum of V ~ 0.4 for all the patterns examined.
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Figure 3.1: Patterns «, v, and p at various thresholds. Some features of less stable
patterns such as oy and B are lost when thresholded. Thresholds slightly higher
than 128 tend to capture the features of the original pattern better.
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Figure 3.2: A plot of the time series of Betti numbers for pattern . The zeroth Betti number By is shown in red and
the first Betti number B; shown in blue. Different thresholds T = 112, 128, 144, and 192 demonstrate the dramatic effect
of thresholding on the calculation of Betti numbers for some patterns. For very high and low T, the image loses any
resemblance to the original image (since it will appear mostly black or white). Slightly varying the threshold near 128,
however, can help minimize the loss of information and remain truer to the original image. Interactive charts for each
pattern type are available online at http://joelhawkins.info/thesis|


http://joelhawkins.info/thesis

3.2. Calculating entropy 31

3.1.2 Computational homology

Once the images are thresholded at some value, the CHOMP method chomp-cubical
processes and returns Betti numbers By, 1, and B2. A single calculation of Betti
numbers takes about 1-3s on a 4.2 GHz Intel i7 processor constituting the greatest
bottleneck in the process. Figure 3.3|shows the intermediate stages of calculating
Betti numbers for a single choice of F, k values. This process is performed for each
of 2,500 text files produced by thresholding to generate a single CSV file of the Betti
numbers B, B1, and B, for each time stepE|

(a) (b)

Figure 3.3: On the left is a spiral pattern with (F,k) = (0.035,0.060) while the
figure on the right shows the pattern thresholded at T = 144. The Betti numbers
for this pattern, as calculated by CHOMP, are Bg = 32, B1 = 5.

3.2 Calculating entropy

In physics, entropy usually denotes the amount of “disorder” of a system. Shan-
non’s entropy, S(X), indicates the average amount of information that an observer
gains after measuring a realized outcome x of the random variable X [26]. We wish
to use homology information to provide a sense of how predictable (how complex)
the dynamics of the Gray-Scott system are for a given choice of parameters (F and

k). In general, the Shannon entropy S of some variable X with possible values

3The Betti number S, is included only for posterity; B, = 0 for all time steps since the images are
only 2D.
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{x1,...,xn} and probability distribution P(x;) = P; is defined by

S(X)=— %Pi log P;. (3.1)
i=1

In our case, the Shannon entropy gives a picture of the average minimum number
of topological “states” required to describe the system based on the frequency of
the states explored by the system (i.e. how often some state occurs in the time
series)ﬁ A state in this case is taken to be a unique pair of Betti numbers s; =
{Bo, B1}: at the ith time step. Although s; does not in general describe a unique
pattern (any two states such that s; = s; could look very different), it captures the
fundamental topology of the system at that moment. Furthermore, the set of states
within a given set of parameters (any F, k) is more meaningful. For example, if
we observe the topology of state s; for pattern «, then we can make an informed
prediction as to what some other state s; might look like for that pattern (assuming
we know what the characteristic/steady-state pattern for a looks like). In general,

we would expect higher entropy for more dynamic, complex patterns.
For N total (non-unique) states equal to the number of time steps, the probabil-

ity P; of state s; given N;, the number of times state s; occurs, is simply
P=—. (3.2)

Figure charts the twenty states, s;, with the highest probability, P; (i.e. the
twenty most probable states) for the pattern y (Figures and [3.1b). More dy-
namic patterns have a more even distribution of many states, each with lower P,.
Patterns like u (Figure that evolve slowly have a very small number of possi-
ble states each with high P; and therefore a very low entropy.

Since we can use homology information, namely the time series of Betti num-
bers, to calculate the entropy of a single pattern, we might ask if we can use this
information to gain insight into the dynamics of the entire Gray-Scott pattern-
forming system. In the following chapter, we examine how the entropy changes
as parameters are varied, how it compares to Pearson’s analysis, and investigate

other information that can be derived from the time series of Betti numbers.

“The units of S are called “nats” when the log in (Eq. is the natural logarithm.
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Pattern y, S = 5.43427630

0.020 + 4
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0.005 + -

0.000

{41,1}{42,1}{40,1}{43,1}{45,1}{46,1}{44,1}{39,1}{37,2}{40,2}{53,1}{52,1}{35,1} {2,1} {60,1}{54,1}{55,1}{47,1}{36,2}{42,2}
si ={Bo.P1}

Figure 3.4: The probability P; of the 20 most probable states s; for pattern o with
(F,k) = (0.022, 0.051). The entropy of this system is S = 5.43 nats. Interactive
charts for each pattern type are available online at http://joelhawkins.info/
thesis.
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Chapter 4

Results

4.1 Entropy maps

Looking back at the analysis of the Gray-Scott system by Pearson, in particular
Figure the least stable regions of F, k occur near the bifurcation lines [9]. We
would expect that patterns with F, k in this region will be the most complex and
therefore have higher entropy. In order to elucidate information about the dy-
namics of the Gray-Scott system, the Shannon entropy (Eq. is calculated for
all {F,k|F € [0.004,0.08], k € [0.03,0.07]} in an evenly spaced 20 x 20 grid (with
spacing dF = 0.004 and dk ~ 0.002) corresponding to the domain of Pearson’s map
of F, k parameter space (Figure[1.3). The diffusion coefficients are fixed at d,, = 0.16
and d, = 0.08 for all points. There are then 400 initial values of F, k for which the
entropy S is calculated.

In order to increase the resolution of the entropy map, an adaptive resampling
method is implemented in the following manner. For any F, k pair of the original
400 points with S > 0.5, the entropy is calculated for the four adjacent points
(F+dF/2,k) and (F,k +dk/2) to form a 5 point stencil around the point. This of
course requires starting from the Gray-Scott simulation outlined in Section[1.2]and
performing the homology calculations for each new F, k pair.

The results of the entropy calculation agree well with our expectations. The
plot in Figure 4.1/ shows the entropy S of the Gray-Scott system for chemical V as
F,k is varied. Note that systems of higher S, the lighter regions of the plot, occur
more densely near the dotted line which indicates the Hopf bifurcation. Figure
shows the entropy S over the same domain for chemicals V' and U, respectively,

without adaptive sampling (only the initial 400 grid points). These too agree with
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Entropy of V resampled, with T = 144

0.08

0.06

L 0.04

0.02°
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0.03 0.04 0.05 0.06 0.07
k

Figure 4.1: A plot of entropy S for the systems described by discrete values of F, k
for chemical V with T = 144. Adaptive resampling is implemented to increase
the resolution of the plot beyond the initial 400 grid points. The phase diagram in
Figure [1.3|is superimposed on the map to illustrate its agreement with Pearson’s
analysis. The system has higher entropy for F, k values in regions that Pearson
identifies as least stable (near the bifurcation lines) [9].

Pearson’s analysis and show that chemicals U and V exhibit similar dynamics.

With 2,500 time steps for each F, k, producing a map of the entropy over F,k
space requires over 1 million calls to chomp—cubicalEl Computed with eight paral-
lel processes on a 4.2GHz Intel i7 processor, this takes about 3-4 days of computa-
tion time.

4.2 Transient states

One consideration in these calculations is the existence of initial transient states. As
the Gray-Scott simulation runs, there are about 100 time steps in which the system

has not yet reached its steady-state. Figure 4.4/ shows the pattern <y at time steps

!Computing the Betti numbers of the system is by far the slowest operation and significantly
bottlenecks the processing time.
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Entropy of V with T = 144 Entropy of U with T = 160
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(a) Chemical V with T = 144. (b) Chemical U with T = 160.

Figure 4.2: A plot of entropy S for the systems described by discrete values of
F,k using only the initial 400 grid points; (a) and (b) show the entropy map for
chemicals V and U respectively. Without resampling, the results still agree well
with Pearson’s analysis; the system has higher entropy near bifurcations where it
is least stable. Furthermore, the entropy maps for each chemical species show near
perfect agreement.

Entropy of V with T = 144 for steps [100, 2500] Entropy of U with T = 160 for steps [100, 2500]

5.70

114
—

T0.03 0.04 0.05 0.06 0.07 T0.03 0.04 0.05 0.06 0.07
k k

(a) Chemical V with T = 144 (b) Chemical U with T = 160

Figure 4.3: A plot of S over F, k space for both chemical V (a) and U (b) consid-
ering only time steps [100,2500] to remove the possible effects of initial transient
states. The entropy for each chemical is slightly higher than that shown in Fig-
ure .2 where the initial 100 time steps are considered in the entropy calculation.
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B AS

(a) vy at t1o. (b) v at tsp. (c) 7y at t100.

Figure 4.4: Pattern vy for time steps t1, t50, and t1gp. Initial time steps are transient.
By time step t190, we begin to see features of the steady state pattern.

10, 50, and 100. The time series in Figure shows how the Betti numbers change
as 7y transitions to the steady-state pattern. Since these initial transient states are
not characteristic of the dynamics of the pattern, we may wish to exclude these
states in our analysis. The entropy maps in Figure |4.3|consider only the time steps
[100, 2500], ignoring the initial transient states that might affect the calculation of
S. We see that, in general, S is higher when the transient states are not considered.
This makes sense due to the fact that there are not only fewer states to begin with
but because the system is not likely to repeat a transient state. In other words, P;
is very low for i € [0,100] and the reduction in N (a lower N in (Eq..2)) serves
only to increase S. Either way, the calculation of S is not dramatically affected by

removing the transient states.

4.3 Domain size

The domain size of the simulation can have a great effect on the entropy of the
system. To illustrate this, simulations of patterns v, €, 8, and J are run with domain
sizes n = 256, 512, and 1024, the results of which are shown in Figure We see
that the entropy always increases with n. This is simply due to the fact that there
is more space which has the potential to greatly increase the complexity of the
pattern. The entropy grows faster for some patterns as n increases; pattern J shows
the greatest rate of change relative to the other patterns. The entropy of the other
patterns grows at a consistent rate. Figure 4.6|illustrates how varying the domain
size affects the observed pattern. It is important to note that although the domain

size is larger, the underlying dynamics of the system remain unchanged [9].



4.4. Other systems 39
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Figure 4.5: Entropy S of patterns v, €, B, and J as the domain size 7 is increased.
Intuitively, the entropy increases with the domain size since there is more space
and therefore greater possible complexity. We notice that S grows faster for some
patterns as n is scaled. Figure 4.6/ shows pattern -y at the 2000th time step for each
domain size n.

4.4 Other systems

One of the virtues of computational homology is its flexibility in analyzing images.
To showcase this, we can examine the homology of a YouTube video. Figure
shows three frames from a YouTube video of a simulation of the SmoothLife au-
tomatonﬂ a continuous spatial generalization of Conway’s “Game of Life” [27].
By extracting frames from the video in the form of PNG files and thresholding at
T = 128, we can calculate the time series of Betti numbers and from there compute
the entropy. We use N to indicate the total number of time steps after choosing
every dt frames. There are a total of 5400 frames in the video, so the frame step
size dt = 4, for example, gives N = 1351 time steps when considering the entire
3m36s video length. Table 4.1| gives the entropy S for dt = 3, dt = 4, and dt = 5.
The entropy is highest for dt = 3, S = 6.82, which is also greater than any S in the
Gray-Scott entropy map in Figure This is unsurprising since the SmoothLife

simulation video is extremely dynamic.

2 As of this writing, the video is available at https://youtu.be/KJe9H6qS821.
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Figure 4.6: The pattern <y at the 2000th time step as the domain size is varied. The
spatial complexity increases greatly as n is grows. A plot of the entropy S for each
n = 256, 512, 1024 is given in Figure 4.5

Table 4.1: The entropy S of the SmoothLife simulation video for different step sizes
and number of time steps.

dt, N ‘ 3,1800 4,1351 5,1081
S ‘ 6.82 6.67 6.54

(C) ,30 =78, ﬁl =43

Figure 4.7: Three near-consecutive frames from a video of a SmoothLife simula-
tion (before thresholding). The Betti numbers By, B; are given for reference. In
this case, g and pB; consider white and black respectively. Computing the Betti
numbers of every 3 frames gives S = 6.82 which is highly entropic. Images
adapted from S. Rafler, “Generalization of Conway’s “Game of Life” to a continu-
ous domain—SmoothlLife,” arXiv preprint arXiv:1111.1567, 2011. Video available at
https://youtu.be/KJe9HEqS821I.
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Conclusion

Throughout this thesis, we have tread the territory of nonlinear dynamics, compu-
tation, topology, and combinatorics. We have shown how the combination of these
theories can produce novel and compelling results when presented with complex
information. By examining patterns at their lowest level, looking closely at the
fundamental geometric structures that make up the dazzling images we see, we
can extract meaningful information and elucidate their properties. In this case, the
analysis of the Gray-Scott system led us to calculate the entropy of the system over
a wide range of parameters which both complements and confirms the analysis
derived directly from the physics of the system.

The homology theory presented here has given us interesting insight into the
dynamics of at least one pattern-forming model, but as I have endeavored to show,
one can extend these techniques to any topological object. This may be a single
image, a video of an experiment, or a 4D construction of medical imaging data; the
tools of homology are amazingly resilient and as computational methods evolve,
these techniques may take precedence in the field of image analysis.

Of course, the findings in this thesis point towards many more avenues for
further investigation of homology. One of the major problems confronted in this
thesis is finding an appropriate threshold for which to perform the Betti number
calculations. This could be solved with the implementation of an adaptive thresh-
olding algorithm or, with a large leap in complexity, applying persistent homology
(a relatively young theory at this time). Another interesting extension would be to
use the time series information to derive more telling mathematical quantities such
as the Lyapunov exponent which would confirm the chaotic dynamics of a system.
It is certain that the applications of homology theory have not yet been exhausted;
one of the virtues is that homology is so fundamental, its applications are wide
open. It is my hope that the reader is convinced of its usefulness in the wake of

increasingly complex data.






Appendix A

Supplemental Math

A.1 Extra definitions and theorems
Definition A.1.1. The free abelian group generated by a finite set
S={s1,52,--.,5n}
is the set of all functions f : S — Z, with the pointwise addition
(f+29)(si):= f(si) +g(si), i=12,...,n

Definition A.1.2. The free abelian group generated by a possibly infinite set S is the
subgroup of Z°, consisting of all functions f : S — Z satisfying

f(s) =0 for all but finitely many s € S.






Appendix B

Code

B.1 Gray-Scott simulation code

The following code is written in the Python language. It requires the Numpy pack-
age which allows for easy and intuitive manipulation of matrices as well as Mat-
plotlib to display the simulation. The procedure RUNGS takes four arguments: d,,,
dy, F, and k. By default, the domain size 7 is set to 256.

import numpy as np

import matplotlib.pyplot as plt

def runGS(Du, Dv, F, k):
n = 256

# create a structured n+2 by n+2 array of double precision floats
Z = np.zeros((n+2,n+2), [(’U’, np.double), (’V’, np.double)])
u,v = Zz[’u’], Z[°V’]

# u, v represent the concentrations of U, V
u,v = U[1:-1,1:-1], V[1:-1,1:-1]

# set initial conditions

r =20

ul...] = 1.0 # set all u to 1.0
Uln/2-r:n/2+r,n/2-r:n/2+r] = 0.50
V[n/2-r:n/2+r,n/2-r:n/2+r] 0.25

# ’sprinkling’ of random noise

u += 0.05*np.random.random((n,n))

v += 0.05%np.random.random((n,n))
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# set up plot
plt.ion()

# plot options

size = np.array(Z.shape)

dpi = 120.0

figsize= size[1]/float(dpi),size[0]/float(dpi)

fig = plt.figure(figsize=figsize, dpi=dpi, facecolor="white")
fig.add_axes([0.0, 0.0, 1.0, 1.0], frameon=False)

cmap = plt.cm.binary # this is a greyscale colormap

im = plt.imshow(V, interpolation=’bicubic’, cmap=cmap) # show V in the plot

plt.xticks([1), plt.yticks([])

# run simulation for 25000 time steps
for i in xrange(25000):
# discretized Laplacian matrix for u
Lu = ( U[0:-2,1:-1] + U[2: ,1:-1] +
Ul1:-1,0:-2] + U[1:-1,2: ] - 4%U[1:-1,1:-1] )

# discretized Laplacian matrix for v
Lv = ( V[0:-2,1:-1] + V[2: ,1:-1] +
V[1:-1,0:-2] + V[1:-1,2: ] - 4%V[1:-1,1:-1] )

uvv = u*xv*v # the nonlinear term uv~™2

# change the concentrations in place
u += (Du*Lu - uvv + F  *(1-u))

v += (DvxLv + uvv - (F+k)x*v )

if i % 10 == 0: # show only every 10 steps on the plot
im.set_data(V)
im.set_clim(vmin=0.0, vmax=0.4) # set color limits
plt.draw()
# to save each figure
plt.savefig(’./gs/gs-%04d.png’ % (i/10) ,dpi=dpi)

plt.ioff ()
plt.close()
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B.2 Entropy calculation code

The code below is used to calculate the entropy maps shown in Figures[4.I|and
It is also written in the Python language and relies on a few extra packages. The
procedure BETTILIST examines pairs of Betti numbers contained in a CSV file with
rows of the form time-step,b0,bl where b0,b1 indicate By and B1. MAKEP_I uses
this list to count the number of times each pair {b0,b1} occurs in the CSV (like
a histogram). This list is normalized by the total number of pairs (equal to the
number of time steps) to give a list P; for each pair. The procedure ENTROPY takes
the list of P; and returns the entropy for the system, S. With the use of these three
procedures, SAVEENTROPYCSV simply exports this information to a single CSV

with rows of the form F,k, S.

import os

import subprocess

import numpy as np

from collections import Counter

import csv

# calculates entropy given a list of P_i
def entropy(P_i):
S =0.0
for i in P_i:
S += -(i*np.log(i)) # the natural log

return S

# creates a list of all Betti number pairs {bO, bl} given a CSV file
def bettilist(csvfile):
betti = []
with open(csvfile, ’rU’) as file:
reader = csv.reader(file, delimiter=’,’)
for row in reader:
bObl = row[1l: 3] # convert the b0, bl part to a string like ’[b0 b1l]’
bOblstr = ’,’.join(bObl)
betti.append(bOblstr)
file.close()

return betti

# makes a list of the probability of each state, P_i
def makeP_i(csvfile):

betti = bettilist(csvfile)

N = len(betti)
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hist = Counter(betti).items() # counts how many times each state occurs
hist.sort(lambda x, y: cmp(x[1], y[1]), reverse=True) # largest P first
# normalize

P_i = np.array([np.divide(pair[1], N, dtype=np.float) for pair in hist])

return P_i, hist, N

# saveEntropyCSV creates a CSV of entropies for each F, k pair
# input is a folder of CSVs (one for each F, k pair)
# containing {b0O, bl} at each time step
def saveEntropyCSV(infolder, outfile):
filelist = os.listdir(infolder)
subprocess.call([’touch’,outfile])
csv = open(outfile, ’r+’)
for csvfile in filelist:
P_i = makeP_i( infolder + ’/’ + csvfile ) [0]
S = entropy(P_i)
F = csvfile.split(’_’)[0] # e.g. ’0.044_0.038.csv’
k = csvfile.split(’_’)[1]1[ :-4] # remove ’.csv’
csv.write( F + >, + k + ?,” + str(S) + ’\n’)

csv.close()
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